Euler Vasquez

Professor Bangali

ENGL 21007, Writing for Engineering.

February 27, 2024.

Video: Do Droughts Make Floods Worse?

Title	Dos dry soil absorb less or more water, and does that affect floods
	in any way?
Abstract	Based on a video by Rob Thompson a meteorologist, we can
	observe how dried up grass absorbs water in a slower rate than
	damp, and moist grass. There for the hypothesis is that dry soil
	causes more damage and makes floods worse in general.
	Different types of soil are compared by putting the different soils
	in a tube and putting water on top of it and calculating the time it
	takes for the water to absorb. Dry and hydrophobic soil makes
	water penetrate slower than wet soil. Although in a controlled
	environment such as a laboratory dry hydrophobic soil does
	reduce the speed of water absorption it does not necessarily mean
	that it will increase the damage caused by floods as there are
	other factors to consider. It is not clear if dry soil makes flooding
	worse or not, but Dry soil does absorb water in a slower rate.
Introduction	Based on a video by Rob Thompson a meteorologist, we can

serve how dried up grass absorbs water in a slower rate than
mp, and moist grass. There is a hypothesis that dry soil causes
are damage and makes floods worse in general; this question
pacts my field of engineering to see the possible damage to
rastructure and the environment. There is a Field of
ecialization of Civil Engineering named Environmental
gineering/Water Resources that focuses on issues like this
garding floods, etc. In general, the classification of soil and its
relation to water/floods are very crucial for the planning of
ejects in various areas.
clear 12 in tube with a diameter of 6 inches. Different soils
th different levels of moisture (Dry soil can be replicated with
nd, and hydrophobic sand.). A hose and a bowl to collect water.
t the tube above grass with high moisture, and above grass with
rmal moisture, and dry soil. Or in a control environment test
ting different soil inside of the tube, this can be the three types
soil with sand replacing dry soil. Test several types of soils and
speed of water absorption, test dry soil (sand) first alone and
n with a layer of hydrophobic sand on top of it. Test by first
tting a type of soil and then adding more water to see if there is
ifference in water absorption.

Results	When the experiment is done, it should reveal that dry soil (sand)
	with a layer of hydrophobic sand takes an abnormal rate to absorb
	water than any other type of soil. But it also reveals that wet soil
	can absorb water at a high rate, this includes dry soil with
	hydrophobic sand.
Discussion	Although this experiment does reveal the impact of dry soil in the
	environment it just opens the door to multiple more questions
	regarding the severity of floods and if dry soil further boosts the
	damage floods will have in the environment. When it comes to
	this last question there is not a right answer but only guesses as
	many factors can alter the way a flood affects the environment,
	and engineers cannot rely on a single basis of information.
Conclusion	To conclude, this experiment was done to analyze how difference
	in soil moisture affects soil's ability to absorb water. It was
	hypothesized that dry hydrophobic soil takes way longer to
	absorb water and although it is true based on this experiment it
	does not resolve the answer if floods occur in drier land this land
	would be affected worse than normal soil.
Acknowledgements	Practical Engineering: Do Droughts Make Floods Worse?
	R0b1et: Why heavy rain might be dangerous after drought